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Designed by Richard McClellan, Nicu Stiurca, David Yanoshak,  Alex Boehm, Steven Hall, and Juan Ortiz 

 

Faculty Advisor Statement  

I certify that the engineering design of the new vehicle, RASmanian Devil, has been significant and each 

team member has earned or could have earned at least two semester hour credits for their work on this 

project.  

Signed,  
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1.0 INTRODUCTION 

This paper describes the University of Texas at Austin’s (UT-Austin) design of RASmanian Devil for the 

17th annual Intelligent Ground Vehicle Competition (IGVC). This vehicle is a culmination of many hours of 

design and effort by voluntary student team members. RASmanian has been designed to participate in 

the three competitive events at IGVC. RASmanian was built as a robotic platform with portable software 

and integrated commercial off-the-shelf (COTS) hardware.   

 

Student Contribution Major Year Hours 

Richard McClellan Team Lead/Integration ME 4th 700+ 

Nicu Stiurca Software/Integration CS 2nd 500+ 

David Yanoshak Electrical/Mechanical EE 4th 150 

Alex Boehm Mechanical ME 2nd 100 

Stephen Hall Electrical/Mechanical EE 1st 50 

Juan Ortiz Mechanical ASE 2nd 50 

   Total (approx) 1450+ 

Table 1: Work Division Breakdown 

 

2.0 DESIGN PLANNING PROCESS 

The process of designing a robotics system involves a careful balance of trade-offs with complexity and 

hardware. Our team set many deadlines and deliverables to schedule time for testing and re-evaluation.  

We set a timeline to achieve hardware, portable software drivers, functional electronics and sensor 

integration.  After multiple progress reviews of the design at set time periods, we made appropriate 

modifications based on available monetary resources and testing time. 

 

2.1 Sub-Teams 

The team divided into mechanical, electrical and software section sub-teams.  The mechanical group 

focused on drive dynamics and manufacturing simplicity.  The electrical group focused on power 

management and interconnection between all electrical systems.  The software team integrated together 

sensor data for path planning and navigation.    

 

2.2 Design Sequence 

Our design sequence begins with high level block diagram of sensors, electronics, software and 

mechanical ideas.  Many design decisions involved choosing commercially-off-the-shelf (COTS) hardware 

to achieve a layer of abstraction from low level devices.  After establishing a sufficient roadmap of the 
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various sub-systems, the sequence begins an iterative loop of evaluating an integrated sub-section and 

redesigning when necessary.   

Our approach differs from a more traditional planning which requires more simulation and analysis of 

each decision.  Our organizational structure and time budget required us to accelerate the analysis 

phase.  To demonstrate proof-of-concept, we create a series of rapid prototypes to eventually achieve a 

functional design to utilize in our final system.  Our quick design strategy allows us to have a working 

robot throughout many design stages.  A functional prototype improved our time in the overall system 

evaluation.   

 

Figure 1: Process Flowchart  

The UT-Austin team is composed of voluntary members of the IEEE Robotics & Automation Society 

called “RAS” in abbreviation.    There are five undergraduates participating in the contest.  Overall work 

hours were approximated into the following breakdown below 

 

3.0 ELECTRICAL SYSTEM 

RAS Devil's electrical system can be broken up into four major systems: power, control, sensor, and 

communication systems.  Each system is closely tied to the others so that we can have full control over 

how our robot performs. 

 

3.1 Power System 

Three components make up the power system on the robot: the batteries, motor controller, and the 

control system power supply.  RAS Devil is powered by a pair of 12 V lead acid batteries run in series to 

produce 24 V.  Each battery can hold 17 Ah of charge while having the ability to provide several hundred 

amps of current when needed.  We are using a Sabertooth Dual 25A motor controller to control our two 

DC drive motors which have the ability to charge the batteries when the motors are back-driven.  Our 

control system is powered by a picoPSU power supply.  The picoPSU can provide 125W of power and 

has the ability to trigger the the startup and shutdown sequence of the computer's motherboard.  Figure 2 

shows our power system block diagram. 
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Figure 2: RAS Devil power diagram.  Ground connections not shown. 

The batteries directly power the motor controller and the picoPSU.  When the control system power 

switch is closed, the picoPSU powers the VEX microcontroller and the picoITX.  All the robot's sensors 

draw their power from either the microcontroller or the picoITX.  The safety benefits of the three switches 

in the power system will further be discussed in section 7.0, Safety. 

 

Monitoring the state of our power system is very important.  We can gather valuable information about the 

state of the robot by monitoring the battery voltage and the current draw from the motors.  The battery 

voltage is monitored by the microcontroller through a simple voltage divider that reduces the battery 

voltage by a factor of three so the microcontroller ADC can measure it.  Motor current is also measured 
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by Allegro current sensors, whos ouput is measured by the microcontroller as well. 

 

Overall our power system is very simple. In years past we have had very complicated wiring, multiple 

separate battery sources, and many extra and unnecessary power switches.  Having such a complicated 

power system lead to failures in our previous robots that prevented the robots from operating correctly, 

even before the code could malfunction itself.  We hope to improve the reliability of our robot's power 

system, which will also improve our overall robot's success.  

 

3.2 Controller 

From past experience, our team wanted a control system which would be reliable, fast, and easy to 

access remotely.  In our previous robots, we have used old laptop computers which did not survive the 

beatings of an outdoor robot, and were not easily repairable or upgradable.  For this reason, we chose to 

use a picoITX motherboard with a VIA C7 1GHz processor.  It is lightweight and very compact, so we did 

not have any trouble making room for it on the robot.  We also purchased a 1GB DD2 RAM card and a 

30GB solid state SATA hard drive, which is much more robust than a conventional hard drive as it is not 

subject to mechanical failure. 

 

 

A Vex Robotics controller unit is used for controlling the motors and encoders.  The unit contains two 

microcontrollers, which operator in a master/slave configuration.  The slave microcontroller handles all 

low level interrupts necessary for reading the encoders, PWM signal generation, and serial 

communication and is preprogrammed.  The master microcontroller provides the interface through which 

the user can easily interface with the sensors and serial port.  Communication with the microcontroller is 

handled through the RS232 port on the motherboard. The motherboard sends commands to reset or get 

the latest encoder values, or set the robot speed.   The microcontroller responds first with an echo of the 

command received, and then in the case of the encoders, the encoder values. 

The Vex Robotics controller also has a built in RC receiver, making it very easy to drive the robot with a 

hand-held remote control unit without having to turn on the computer.  A simple toggle switch connected 

to one of the digital I/O pins toggles the signal source between the RC transmitter and the picoITX. 
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Figure 3: Electronics System 

 

3.3 Wireless Communication 

To make our system easier to develop from remote workstations, and eliminate the need for a keyboard, 

mouse, and monitor connected to the robot, we wanted to have wireless communication.  Initially, an 

EDIMAX EW-7711UAn Wireless USB Adapter was used to connect the picoITX to a Linksys WRT54G 

router so that we could remotely connect to the robot from another computer connected to the same 

router.  This solution worked, but was not ideal because the Wireless Adapter had a very limited range 

and when it disconnected from the router, it would not automatically reconnect.  This required hooking up 

a monitor, mouse, and keyboard to the robot every time we needed to reconnect to the wireless network.  

To fix this issue, the robot now utilizes a Linksys WGA600N Wireless Gaming Adapter, connected directly 

to the picoITX ethernet port.  The gaming adapter is setup to automatically connect to the main router, 

and also provides a much greater range for the robot to travel which is very helpful.  

 

3.4 Sensors 

Choosing the right sensors was key to making a system that worked well as a whole.  Significant effort 

was spent examining each datasheet of each sensor before its purchase to ensure that it would work the 

way we desired. 

 

Laser Rangefinder 

Wireless Gaming Adapter Pico-ITX Motherboard 

Vex Microcontroller 
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3.4.1 Laser Rangefinder 

Our team chose to purchase a Hokuyo UHG-08LX scanning laser rangefinder for its 8m range, and 

relatively low price tag compared to the more common SICK rangefinders.  With 1mm trace resolution, a 

270 degree field of view, 0.36 degree angular resolution, and 15Hz scan rate, it was determined to be 

suitable for obstacle avoidance in this competition. 

 

3.4.2 Camera 

Line detection is done with a 2MP Logitech Quickcam Pro 9000, capable of up to 1600x1200 pixels and 

up to 30 frames per second.  It also features an autofocus system which eliminates all manual tuning, 

which was one issue we had in previous years. 

 

Figure 4: Logitech Quickcam Pro 9000 

3.4.3 Quadrature Encoders 

Our instantaneous localization algorithm is done using odometry, which integrates values from two 

quadrature encoders (Grayhill 63R256), which are directly coupled to the left and right wheel shafts. The 

casing of the encoder is completed enclosed allowing it to work in any lighting without calibration, and 

also increasing durability.  By looking at both the rising and falling edges of each signal, we can obtain 

512 increments per revolution.  With 16in diameter wheels, movement of the robot is measured with 

2.5mm resolution.  

 

3.4.4 IMU 

The IMU is a Microstrain 3DMG IMU.  The 3DMG uses tri-axial accelerometers, magnetometers and 

angular rate sensors to provide accurate roll, pitch, and heading information.  The IMU provides data at 

rate of 75 Hz with a precision of 0.01 degrees [2].   

 

3.4.5 GPS 

We have tested two different GPS receivers on the robot.  Eventually we decided on the Garmin 72 GPS, 

which gives WAAS capability and a 3 meter accuracy [1].  We communicate with the GPS using a RS-232 

serial link.  The GPS has handheld features such as embedded button controls allowing the user to view 

all information on the GPS for quick debugging. 
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4.0 MECHANICAL SYSTEM 

Before designing this year’s mechanical system, our first step was to carefully review the strengths and 

weaknesses of last year’s robot.  At the actual competition, our primary strengths were reliability, and 

robustness, but our ability to navigate was complicated by the fact that we used skid steering.  At a slow 

speed, which is what the software called for, the response from the motors was far from linear and since 

we lacked a velocity control system, the system was jerky.  As a result, we designed this year’s drive 

system to operate at a lower maximum speed for more torque.  We also went to a two wheel drive system 

with a caster in order to drastically reduce the resistance to turning, thus making it easier to control and 

maneuver around obstacles.  

Since the motors were much faster than we wanted the wheels to spin, gearboxes were required.  We 

chose to use the gearboxes out of a Dewalt drill for their reliability, and coupled them with some 2.5” CIM 

motors, which we had available from a previous competition.  Two Dewalt/CIM assemblies were made for 

each side, and were linked to the main driveshaft using sprocket and chain.  Our motors free spin at 5310 

rpm with 343 oz-in torque.  This is reduced by 60:1 via the 12:1 gearbox and the 5:1 sprocket reduction.  

With two 16” driven trailer tires, we should move approximately 4.3 mph with a pushing force forward of 

400 lbs, much more powerful than the pushing force of 200lbs last year.  With these specifications we will 

meet the max speed limit of the vehicle with an ample amount of torque for climbing the fifteen percent 

grade ramp.  In addition to the torque, the two 16” wheels have high traction to make the climb on the 

ramp easier.  

For mounting structures, we decided on a polycarbonate frame to house the majority of the electronics.  

Last year we had everything in a box underneath the payload, so this year we made everything above the 

payload for easier access.  For the speed controllers and power distribution, we built a small 

polycarbonate compartment underneath the robot.  The electronics mounting system was created to keep 

the center of gravity relatively low.  As a result, the payload, speed controllers, breaker panel, 

microcontroller, and scanning laser range inders all had to be mounted relatively close to the bottom of 

the chassis to keep it from tipping over.  The laptop was also mounted above the payload to allow for 

easy access while testing the system.  From the base of the robot, two vertical aluminum square 

extrusions were mounted.  Along the entire length of the square extrusions, mounting holes were drilled 

so the range finders can be easily attached at different heights.  The range finders themselves are 

mounted on a piece of flat aluminum bent at 22.5 degree angles.  Since the sonars have a range of 45 

degrees, this bending strategy gives us double coverage on obstacles 8 feet from the front of the vehicle 

with a total range of 180 degrees.  The IMU, Camera, and GPS had to be mounted high for optimum 

sensor performance, so we put a tower above the two front drive wheels for the mounting of these three 

components.  
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Figure 5: Solidworks System Level Model 

 

Figure 6: Solidworks Drivetrain System 
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5.0 SOFTWARE 

The main software architecture is built using the OpenGL Utility Toolkit, or GLUT.  This API was chosen 

because it fuses computer industry standard OpenGL with a mature, flexible, and simple framework for 

designing event-driven programs. Since the ultimate goal is autonomy, the simplicity of GLUT is not 

restrictive because our User Interface need not be overly complex. That said, we use OpenGL to 

visualize the robot's sensory input, and designing the application as event-driven aids debugging by 

enabling easy on-line calibration of the robot. Specifically, we set up a menu, keyboard, and mouse 

callbacks to control the robot's hardware (eg, motors) directly, start/stop data aquisition, calibrate 

variables used by our Simultaneous Localization and Mapping (SLAM), vision, and navigation algorithms, 

and the display of sensor inputs and all relevant debug data. Furthermore, we take advantage of GLUT's 

robust event processing loop to schedule data aquisition and processing in a seemingly multi-threaded, 

asynchronous fashion without having to deal with any of the pitfalls, gotchas, and intricacies of creating 

and managing multiple threads. Whenever the GLUT program is not busy with handling user input or 

displaying sensor and debug info (these actions take very little time and CPU power), it polls the sensors 

for new data and uses it to update the robot's perceived state.  

 

5.1 S.L.A.M. 

The robot continuously scans its surroundings using a laser rangefinder in order to update an occupancy 

grid to be used by the navigation code. It does so in conjunction with encoders and a compass which 

serve to provide a pose estimation. After this data is received from each hardware device, it is all passed 

to another function which performs simultaneous localization and mapping to update the occupancy grid.  

In order to obtain the initial pose estimate, the following algorithm is used:  

 

LeftDistance = ((LeftEncoder - LastLeftEncoder))/TICKS_PER_METER RightDistance = 

((RightEncoder - LastRightEncoder))/TICKS_PER_METER Distance =  (LeftDistance + 

RightDistance)/2.0 

Theta = Theta - (RightDistance -  LeftDistance)/WHEEL_BASE  

Y = Y + Distance*cos(Theta) 

X = X + Distance*sin(Theta)  

 

This algorithm will work for any robot with a tank style drive system.  TICKS_PER_METER and 

WHEEL_BASE are two constants dependent upon the size of the specific robot being used. Although 

encoders are good for computing relative heading in the short term, they are unreliable in the long term 

due to wheel slippage, limited encoder precision, finite computational precision, and any other factors that 

introduce error. Therefore, we periodically re-evaluate our absolute heading using a digital compass to 

prevent buildup of error over the run of the robot.   
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Once the robot’s pose is determined, the occupancy grid is adjusted.  Each cell in the grid represents a 

10cm by 10cm square in the world and contains a value representing the probability that the cell is 

occupied.  Each cell is initialized with a value of zero for unknown, and ranges between positive and 

negative infinity.  When the rangefinder traces are superimposed on the occupancy grid, the value of the 

cell containing the endpoint is decremented to represent a decreased probability that the cell is passable, 

and every cell between the robot and endpoint is incremented to represent an increased probability that 

those cells are passable. The amount that the probability is adjusted for each cell depends on how much 

of the cell is traversed by the trace: the probability is adjusted more for cells that the beam passes straight 

through the middle than for cells whose corner is barely grazed by the trace.  From a graphical 

perspective, all grid cells start out gray and gradually turn black if the cell is occupied, or white if the cell is 

empty.  

 

5.2 Vision  

The vision algorithm uses an open source computer vision library developed by Intel called OpenCV. The 

OpenCV process is for acquiring and processing the image from the webcam.  We used C++ and the 

OpenCV library to process the image and extract information about hazards. We tried to remove as many 

user defined parameters as possible and eliminate false positives due to noise while at the same time 

keeping our algorithm as robust as possible. 

The vision algorithm first gets the raw image from the camera and rescales the image size to 160x120 

pixels. This resolution was empirically chosen because the processing time and information losses were 

deemed acceptable. The algorithm converts the image to grayscale, splits the image into two sub-images 

and begins the search for lines in each of the two half images. 

 

The line detection algorithm uses the OpenCV implementation of the Hough transform to find the three 

most prominent lines in each image. If no prominent lines are in the image, the Hough transform will often 

detect lines around the square edges of the image or detect non-stationary lines due to noise, in which 

case the data is ignored. Note that the Hough transform is much more robust than any methods that 

binarize an image using a user defined intensity threshold because there are no parameters to be 

adjusted. 

 

The line extraction algorithm then converts the three most prominent lines into robot centric coordinates 

using an inverse perspective transformation. This transformation allows us to represent the detected lines 

in a robot centric frame of reference, which is of more value for control purposes than a camera centric 

frame of reference. 

 

To filter spurious data, the angle and perpendicular distances of the three lines are found and the lines 

that have the most common properties are averaged. This filter, combined with the filter that ignores edge 
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lines, greatly reduces the number of false positives the algorithm encounters. Shown below in Figure 8 is 

a distorted grass/concrete sample image which displays the final Hough green line and binary image 

output of the brightness threshold.     

 

Figure 7: Vision Processing Image on road 

We also tested in an all concrete driving scenarios to prove the algorithm will be robust for a wide variety 

of terrain.  Notice how the grass line is much easier to distinguish than the highway line. As a stable 

testing platform we implemented “OpenView Vision”, a Labview-OpenCV testing environment that quickly 

test and modify parameters on the fly [11]. 

 

5.3 Navigation and Obstacle Avoidance 

Since the map of the course and placement of obstacles is not available ahead of time, it is impossible for 

the robot to plan its path from start to goal. Taking advantage of the fact that the road does not fork, the 

robot's goal is simply "go forward". As the robot advances through the course and obstacles are 

discovered and marked on the occupancy grid, the navigation code uses a simple bugging algorithm to 

circumvent cells that are impassable. For the navigation challenge, keeping track of which way is 

"forward" can be tricky as the road turns or if the robot is forced to backtrack after encountering a dead 

end because of obstacle placement. The main heuristic for determining which way is "forward" is to 

remember the traversed path and to avoid going towards regions that have already been explored. In the 

aforementioned case when the robot is forced to backtrack even as the heuristic "forward" into the dead 

end, the backtracking marks the path to the dead end as having been explored a second time, so the 

robot becomes more reluctant to fall into the same trap again since it avoids paths it has already taken. 

Eventually after sufficient backtracking, the robot comes to a point where it can go forward again without 

being forced into the dead end a second time, so it gets back on track towards the goal by exploring new 

regions of the course. 

 

6.0  PREDICTIONS 

Our low-cost drive train and configurable electronics will provide a reasonable opportunity for success at 

the 2009 competition.  The motors and gear box in this drive train allow a maximum speed of around 5 

MPH.  However, as the robot was designed for outdoor use, we predict that we should be able to carry 
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the payload up 15% grades with no problem. We predict that the 24V lead acid battery will provide six to 

eight hours of battery life.  

Our camera can see objects in excess of 20 feet depending on the ambient brightness and the contrast, 

but our sonars have a maximum range of 10 feet.  Our GPS has a best accuracy of 2 meters, but in 

practice on a clear day, far from buildings, we achieve an accuracy of 3-5 meters.  Our waypoint 

navigation is bounded by our GPS navigation.   

 

7.0 SAFETY 

Safety has been a primary concern in many decisions throughout the design process of the robot.  

Human interaction with the robot is the main focus of robot safety.  A testing operator will be present with 

an electrical safety stop (E-stop) whenever the robot is in operation.  This hardware E-Stop is located 

directly after the batteries, see figure #. It is meant to cut power to every system of the robot in the event 

of a serious problem or emergency.  A less extreme option for disabling the robot is in our remote kill-

switch.  The remote kill-switch is wired so that it only cuts power to the motor controllers, disabling the 

robot's movement.  This allows the user to disable the robot's motors while keeping the control system 

running, which is very useful for testing and debugging.   In addition to the hardware E-stop and the 

remote kill-switch, we designed the software to immediately stop robot operation if our testing 

communication link is lost.  In the early construction phase, we incorporated safety rules such as 

eliminating sharp edges, adding bumpers and covering exposed wires.  All the high-current power wires 

use Anderson PowerPole connectors to avoid short circuiting batteries.  In general, the robot has been 

designed for human interaction to ensure public safety around the RAS Devil. 

 

8.0 COST  

Quantity Part Retail Price Our Price 

1 VIA EPIA N 10000 Pico-ITX Motherboard, 1GB 
RAM, 30GB SATA Solid State Drive 

$350  $0  

1 M3-ATX PicoPSU Form Factor Intelligent Vehicle 
DC-DC Power Supply 

$80  $0  

1 Microstrain 3DM-G IMU $1,495  $0  

1 Logitech QuickCam Pro 9000 $90  $90  

1 Garmin GPS 72 Unit $110  $110  

1 Hokuyo UHG-08LX Laser Rangefinder                       $3950 $0  

2 GrayHill 63R Encoders $60 $60  

2 IFI Victor 884 Speed Controller $350  $350  

1 Vex Microcontroller $150 $150 

1 Linksys WGA600N Wireless Gaming Adapter $80 $80 
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1 Linksys WRT54G Wireless Router $70 $70 

4 CIM Motors $120 $120 

4 Dewalt Hand Drills (for gearboxes) $220 $220 

2 16” Trailer Tires $70 $70 

1 Aluminum for frame $150 $150 

1 Polycarbonate for Electronics Housing $50 $50 

1 Sprockets and Chain $100 $100 

Total   $7,495  $1,620  

Table 2: System Level Budget 

9.0 CONCLUSION 

RASManian is a culmination of effort of the RAS team from the University of Texas at Austin. As a third 

year team into the competition, our contributions to software infrastructure and low-cost electronic design 

are quite portable.  In addition, our versatility and flexibility in software design and multiple mechanical 

testing platforms will be a defining aspect of our presence at the IGVC competition.   
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